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Problem formulation

• Linear dynamical system

A composed of unstable modes

Slotted time-varying channel evolving at the same time 

scale of the system

• Time-varying channel



Problem formulation

Objective: identify the trade-off between system’s unstable 

modes  and channel’s rate to guarantee stability:



In the literature…

• Two main approaches to channel model

Information-theoretic approach (bit-rate)

Network-theoretic approach (packets)



Information-theoretic approach

• A rate-based approach, transmit

• Derive data-rate theorems quantifying how much rate is needed to 

construct a stabilizing quantizer/controller pair

Can we merge the two approaches?

• Stochastic time-varying rate limited feedback: rate process { Rk } i.i.d. according

to a random variable R.

Rate
Process R1

R2

R3

Time

• Special cases: R is deterministic, R is 0 or ∞
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Time



Network-theoretic approach

• A packet-based approach (a packet models a real number)

• Determine the critical packet loss probability above which the system 

cannot be stabilized by any control scheme
Packet loss point of view

• Rate process:

Rk =
∞ w.p. 1− p

0 w.p. p

Rate
Process

0

∞ ∞

Time

• There is a critical dropout probability p for estimation (Sinopoli et al 2004) and

control (Schenato et al 2007, Gupta et al 2007):

p <
1

maxi |λ i |2
.
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• Tatikonda-Mitter (IEEE-TAC 2002)

Information-theoretic approach 

Time

Rate

Rate process:                          known at the transmitter

Disturbances and initial state support: bounded

Data rate theorem:

a.s. stability

• Generalizes to vector case as:



• Nair-Evans (SIAM-JCO 2004, best paper award)

Information-theoretic approach 

Rate process:                        known at the transmitter

Disturbances and initial state support: unbounded

Bounded higher moment (e.g. Gaussian distribution)

Data rate theorem:

Second moment stability

Time

Rate

• Generalizes to vector case as:



Intuition

• Want to compensate for the expansion of the state during the 

communication process

State variance instability R-bit messagel
2

• At each time step, the uncertainty volume of the state

• Keep the product less than one for second moment stability



• Martins-Dahleh-Elia (IEEE-TAC 2006)

Information-theoretic approach 

• Scalar case only

Can we merge the two approaches?

• Stochastic time-varying rate limited feedback: rate process { Rk } i.i.d. according

to a random variable R.

Rate
Process R1

R2

R3

Time

• Special cases: R is deterministic, R is 0 or ∞
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Rate

Time

Rate process:            i.i.d process distributed as R

Disturbances and initial state support: bounded

Causal knowledge channel: coder and decoder have knowledge of

Data rate theorem:

Second moment stability



Intuition




2

22R1

Rate R1

State variance




2

22R2

Rate R2

• Keep the average of the  product less than one for second 

moment stability

• At each time step, the uncertainty volume of the state



• Minero-F-Dey-Nair (IEEE-TAC 2009)

Information-theoretic approach 

• Vector case, necessary and sufficient conditions almost tight

Can we merge the two approaches?

• Stochastic time-varying rate limited feedback: rate process { Rk } i.i.d. according

to a random variable R.

Rate
Process R1

R2

R3

Time

• Special cases: R is deterministic, R is 0 or ∞
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Rate

Time

Rate process:            i.i.d process distributed as R

Disturbances and initial state support: unbounded

Bounded higher moment (e.g. Gaussian distribution)

Causal knowledge channel: coder and decoder have 

knowledge of

Data rate theorem:

Second moment stability



Proof sketches

• Necessity: Using the entropy power inequality find a recursion

Thus,

• Sufficiency: Difficulty is in the unbounded support, uncertainty

about the state cannot be confined in any bounded interval, 

design an adaptive quantizer, avoid saturation, achieve high 

resolution through successive refinements.



• Divide time into cycles of fixed length     (of our choice) 

• Observe the system at the beginning of each cycle and send an initial 

estimate of the state 

• During the remaining part of the cycle  “refine’’ the initial estimate

• Number of bits per cycle is a random variable dependent of the rate 

process

• Use refined state at the end of cycle for control

Proof of sufficiency

t



Adaptive quantizer

• Constructed recursively



Successive refinements: example

• Suppose we need to quantize a positive real value 

• At time               suppose

• With one bit of information the decoder knows that  



Successive refinements: example

• At time              suppose 

• After receiving 01 the decoder knows that                        , thus the initial

estimate                           has been refined

• Partition the real axis according to the adaptive 3-bit quantizer

• Label only the partitions on the positive real line (2 bits suffice)

• The scheme works as if we knew ahead of time that 



Proof of sufficiency

• Find a recursion for

• Thus, for      large enough



Network-theoretic approach

• A packet-based approach (a packet models a real number)

Packet loss point of view

• Rate process:

Rk =
∞ w.p. 1− p

0 w.p. p

Rate
Process

0

∞ ∞

Time

• There is a critical dropout probability p for estimation (Sinopoli et al 2004) and

control (Schenato et al 2007, Gupta et al 2007):

p <
1

maxi |λ i |2
.

November 01, 2008 - Yale Workshop

Time

Rate



Critical dropout probability

• Sinopoli-Schenato-F-Sastry-Poolla-Jordan (IEEE-TAC 2004) 

• Gupta-Murray-Hassibi (System-Control-Letters 2007) 

Time

Rate

Packet loss point of view

• Rate process:

Rk =
∞ w.p. 1− p

0 w.p. p

Rate
Process

0

∞ ∞

Time

• There is a critical dropout probability p for estimation (Sinopoli et al 2004) and

control (Schenato et al 2007, Gupta et al 2007):

p <
1

maxi |λ i |2
.

November 01, 2008 - Yale Workshop

• Generalizes to vector case as:



Critical dropout probability

• Can be viewed as a special case of the information-theoretic 

approach 

• Gaussian disturbance requires unbounded support data rate 

theorem of Minero, F, Dey, Nair, (2009) to recover the result



Stabilization over channels with memory

• Gupta-Martins-Baras (IEEE-TAC 2009)

• Critical “recovery probability”

Markov Jump Linear Systems.

Consider the scalar MJLS defined by

zk+ 1 =
|λ|

2R k
zk + c, (3)

where zk ∈ R with z0 < ∞ , c > 0 is a constant, { Rk } k≥ 0 is

the Markov rate process described above. Let H be the n × n

matrix with nonnegative real elements

hi j =
1

22r j
pj i , (4)

for all i , j ∈ { 1, . . . , n} . The following lemma states the

necessary and sufficient condition for the mean square stability

of the system (3) in terms of the unstable mode |λ| and the

spectral radius of H . The spectral radius ρ(·) of a matrix is

the maximum among the absolute values of its eigenvalues.

Lemma 1: Necessary and sufficient condition for the mean

square stability of the system (3) is that

|λ|2 <
1

ρ(H )
.

The proof of the above lemma is omitted as the claim is a

special case of [4, Theorem 3.9] and [4, Theorem 3.33].

III. SCALAR SYSTEM

Consider the special case of a scalar system

xk+ 1 = λxk + uk + vk , yk = xk + wk , ∀k ∈ N. (5)

where |λ| ≥ 1.

Theorem 1: Under assumptions A0-A3, there exists a con-

trol that stabilizes the scalar system (5) in mean square sense

if and only if the MJLS (3) is mean square stable, that is, if

and only if

|λ|2 <
1

ρ(H )
. (6)

Remark 1: In the above condition the unstable mode of the

system and the channel properties are decoupled. This means

that for a given Markov rate process there exists a threshold

above which the system cannot be stabilized by any control.

Application of Theorem 1 yields the following results as

special cases.

a) Constant rate. When the channel supports a constant

rate r , we have that H = 1/ 22r and thus (6) reduces to the

well known data rate theorem condition

r > log |λ|

derived in [18], [25].

b) Independent rate process. Consider the special case of

an i.i.d. rate process Rk where Rk ∼ R has probability mass

function pi = P{ R = r i } , r i ∈ R . In this case, letting p =

(p1, . . . , pn )T and h = (2− 2r 1 , . . . , 2− 2r n )T ,

H = p1, . . . , pn
T

2− 2r 1 , . . . , 2− 2r n = phT

.

p

1− p1− q

q

Bad Good

Fig. 2. A two-state Markov chain modeling a bursty packet erasure channel.

is a rank-one matrix whose only nonzero eigenvalue is hT p.

Therefore, Theorem 1 yields the result in [16], [17],

|λ|2ρ(H ) = |λ|2 2− 2r 1 , . . . , 2− 2r n p1, . . . , pn
T

= E
|λ|2

22R
< 1.

If we further specialize to the case n = 2, r1 = 0, r2 = r ,

and we let r → ∞ , then the stability condition p1 > 1/ |λ|2

depends only on the erasure rate of the channel, i.e. we recover

the packet loss model result in [8].

c) Two-state Markov process. In the special case illustrated

in Fig. 2 in which n = 2, p12 = q, and p21 = p for some

0 < p, q < 1, we have

H =
1

22r 1
(1 − q) 1

22r 2
p

1
22r 1

q 1
22r 2

(1 − p)
(7)

and the condition in Theorem 1 reduces to

|λ|2ρ(H ) =
|λ |2

2
tr(H ) +

|λ |2

2
tr(H )2 − 4det(H ) < 1, (8)

where tr(H ) and det(H ) denote the trace and determinant of

H , respectively. The special case where r1 = 0 and r2 = r

was previously studied in [27] where, by following a different

approach, the authors proved that necessary and sufficient

condition for stabilization is that

E
|λ|2τ

22r
< 1. (9)

Here τ denotes the “hitting time” of state r , i.e., the time be-

tween two consecutive visits of that state, and the expectation

is taken with respect to τ . Intuitively, this condition says that

r should be large enough to compensate for the expansion of

the state during the time in which packets are erased and thus

no information can be sent from the observer to the controller.

Condition (9) simplifies to

|λ|2 <

1
tr(H )

if det(H ) = 0,

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
otherwise,

where H is given by (7) with r1 = 0 and r2 = r . Observe

that

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
= 2

tr(H )+
√

tr(H )2− 4det(H )
,

so (8) is equivalent to (9) and our result recovers the one

in [27] in the special case where r1 = 0 and r2 = r .

Network theoretic approach

Two-state Markov chain



Stabilization over channels with memory

• You-Xie (IEEE-TAC 2010)

• For                    recover the critical probability

• Data-rate theorem

Markov Jump Linear Systems.

Consider the scalar MJLS defined by

zk+ 1 =
|λ|

2R k
zk + c, (3)

where zk ∈ R with z0 < ∞ , c > 0 is a constant, { Rk } k≥ 0 is

the Markov rate process described above. Let H be the n × n

matrix with nonnegative real elements

hi j =
1

22r j
pj i , (4)

for all i , j ∈ { 1, . . . , n} . The following lemma states the

necessary and sufficient condition for the mean square stability

of the system (3) in terms of the unstable mode |λ| and the

spectral radius of H . The spectral radius ρ(·) of a matrix is

the maximum among the absolute values of its eigenvalues.

Lemma 1: Necessary and sufficient condition for the mean

square stability of the system (3) is that

|λ|2 <
1

ρ(H )
.

The proof of the above lemma is omitted as the claim is a

special case of [4, Theorem 3.9] and [4, Theorem 3.33].

III. SCALAR SYSTEM

Consider the special case of a scalar system

xk+ 1 = λxk + uk + vk , yk = xk + wk , ∀k ∈ N. (5)

where |λ| ≥ 1.

Theorem 1: Under assumptions A0-A3, there exists a con-

trol that stabilizes the scalar system (5) in mean square sense

if and only if the MJLS (3) is mean square stable, that is, if

and only if

|λ|2 <
1

ρ(H )
. (6)

Remark 1: In the above condition the unstable mode of the

system and the channel properties are decoupled. This means

that for a given Markov rate process there exists a threshold

above which the system cannot be stabilized by any control.

Application of Theorem 1 yields the following results as

special cases.

a) Constant rate. When the channel supports a constant

rate r , we have that H = 1/ 22r and thus (6) reduces to the

well known data rate theorem condition

r > log |λ|

derived in [18], [25].

b) Independent rate process. Consider the special case of

an i.i.d. rate process Rk where Rk ∼ R has probability mass

function pi = P{ R = r i } , r i ∈ R . In this case, letting p =

(p1, . . . , pn )T and h = (2− 2r 1 , . . . , 2− 2r n )T ,

H = p1, . . . , pn
T

2− 2r 1 , . . . , 2− 2r n = phT

.

p

1− p1− q

q

0 r

Fig. 2. A two-state Markov chain modeling a bursty packet erasure channel.

is a rank-one matrix whose only nonzero eigenvalue is hT p.

Therefore, Theorem 1 yields the result in [16], [17],

|λ|2ρ(H ) = |λ|2 2− 2r 1 , . . . , 2− 2r n p1, . . . , pn
T

= E
|λ|2

22R
< 1.

If we further specialize to the case n = 2, r1 = 0, r2 = r ,

and we let r → ∞ , then the stability condition p1 > 1/ |λ|2

depends only on the erasure rate of the channel, i.e. we recover

the packet loss model result in [8].

c) Two-state Markov process. In the special case illustrated

in Fig. 2 in which n = 2, p12 = q, and p21 = p for some

0 < p, q < 1, we have

H =
1

22r 1
(1 − q) 1

22r 2
p

1
22r 1

q 1
22r 2

(1 − p)
(7)

and the condition in Theorem 1 reduces to

|λ|2ρ(H ) =
|λ |2

2
tr(H ) +

|λ |2

2
tr(H )2 − 4det(H ) < 1, (8)

where tr(H ) and det(H ) denote the trace and determinant of

H , respectively. The special case where r1 = 0 and r2 = r

was previously studied in [27] where, by following a different

approach, the authors proved that necessary and sufficient

condition for stabilization is that

E
|λ|2τ

22r
< 1. (9)

Here τ denotes the “hitting time” of state r , i.e., the time be-

tween two consecutive visits of that state, and the expectation

is taken with respect to τ . Intuitively, this condition says that

r should be large enough to compensate for the expansion of

the state during the time in which packets are erased and thus

no information can be sent from the observer to the controller.

Condition (9) simplifies to

|λ|2 <

1
tr(H )

if det(H ) = 0,

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
otherwise,

where H is given by (7) with r1 = 0 and r2 = r . Observe

that

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
= 2

tr(H )+
√

tr(H )2− 4det(H )
,

so (8) is equivalent to (9) and our result recovers the one

in [27] in the special case where r1 = 0 and r2 = r .

Taking the limit r → ∞ , we have that det(H ) → 0

and tr(H ) → 1− q, and so the above inequalities simplify to

the condition (1 − q)|λ|2 < 1, which means that the stability

Information-theoretic approach

Two-state Markov chain, fixed R or zero rate

Disturbances and initial state support: unbounded

Let T be the excursion time of state R



Intuition

• Send R bits after T time steps

• In T time steps the uncertainty volume of the state

• Keep the average of the  product less than one for second 

moment stability

State variance T time steps R-bit message




2T



Stabilization over channels with memory

• Coviello-Minero-F (IEEE-TAC 2013)

• Obtain a general data rate theorem that recovers all previous 

results using the theory of Jump Linear Systems

Information-theoretic approach

Disturbances and initial state support: unbounded

Time-varying rate       

Arbitrary positively recurrent time-invariant Markov chain of n

states



Markov Jump Linear System




2

22rk

Rate rk

State variance

• Define an auxiliary dynamical system (MJLS)



Markov Jump Linear System

r(H )• Let              be the spectral radius of H

• The MJLS is mean square stable iff

• Relate the stability of MJLS to the stabilizability of our system

l
2
r(H ) <1

• Let H be the matrix defined by the transition probabilities 

and the rates



Data rate theorem

• Stabilization in mean square sense over Markov time-varying 

channels is possible if and only if the corresponding MJLS is 

mean square stable, that is:



Proof sketch

The second moment of the system state is lower bounded 

and upper bounded by two  MJLS with the same dynamics

is a necessary 

condition

Lower bound: using the entropy power inequality



Proof sketch

Upper bound: using an adaptive quantizer at the beginning of each cycle 

the estimation error is upper bounded as  

This represents the evolution at times                           of a MJLS

where

A sufficient condition for stability of             is 



Proof sketch

Assuming

Can choose         large enough so that 

MJLS              is stable

Second moment of estimation error at the beginning of each cycle is 

bounded

The state remains second moment bounded.



Previous results as special cases



Previous results as special cases

• iid bit-rate

• Data rate theorem reduces to



Previous results as special cases

• Two-state Markov channel

• Data rate theorem reduces to

Markov Jump Linear Systems.

Consider the scalar MJLS defined by

zk+ 1 =
|λ|

2R k
zk + c, (3)

where zk ∈ R with z0 < ∞ , c > 0 is a constant, { Rk } k≥ 0 is

the Markov rate process described above. Let H be the n × n

matrix with nonnegative real elements

hi j =
1

22r j
pj i , (4)

for all i , j ∈ { 1, . . . , n} . The following lemma states the

necessary and sufficient condition for the mean square stability

of the system (3) in terms of the unstable mode |λ| and the

spectral radius of H . The spectral radius ρ(·) of a matrix is

the maximum among the absolute values of its eigenvalues.

Lemma 1: Necessary and sufficient condition for the mean

square stability of the system (3) is that

|λ|2 <
1

ρ(H )
.

The proof of the above lemma is omitted as the claim is a

special case of [4, Theorem 3.9] and [4, Theorem 3.33].

III. SCALAR SYSTEM

Consider the special case of a scalar system

xk+ 1 = λxk + uk + vk , yk = xk + wk , ∀k ∈ N. (5)

where |λ| ≥ 1.

Theorem 1: Under assumptions A0-A3, there exists a con-

trol that stabilizes the scalar system (5) in mean square sense

if and only if the MJLS (3) is mean square stable, that is, if

and only if

|λ|2 <
1

ρ(H )
. (6)

Remark 1: In the above condition the unstable mode of the

system and the channel properties are decoupled. This means

that for a given Markov rate process there exists a threshold

above which the system cannot be stabilized by any control.

Application of Theorem 1 yields the following results as

special cases.

a) Constant rate. When the channel supports a constant

rate r , we have that H = 1/ 22r and thus (6) reduces to the

well known data rate theorem condition

r > log |λ|

derived in [18], [25].

b) Independent rate process. Consider the special case of

an i.i.d. rate process Rk where Rk ∼ R has probability mass

function pi = P{ R = r i } , r i ∈ R . In this case, letting p =

(p1, . . . , pn )T and h = (2− 2r 1 , . . . , 2− 2r n )T ,

H = p1, . . . , pn
T

2− 2r 1 , . . . , 2− 2r n = phT

.

p

1− p1− q

q

r1 r2

Fig. 2. A two-state Markov chain modeling a bursty packet erasure channel.

is a rank-one matrix whose only nonzero eigenvalue is hT p.

Therefore, Theorem 1 yields the result in [16], [17],

|λ|2ρ(H ) = |λ|2 2− 2r 1 , . . . , 2− 2r n p1, . . . , pn
T

= E
|λ|2

22R
< 1.

If we further specialize to the case n = 2, r1 = 0, r2 = r ,

and we let r → ∞ , then the stability condition p1 > 1/ |λ|2

depends only on the erasure rate of the channel, i.e. we recover

the packet loss model result in [8].

c) Two-state Markov process. In the special case illustrated

in Fig. 2 in which n = 2, p12 = q, and p21 = p for some

0 < p, q < 1, we have

H =
1

22r 1
(1 − q) 1

22r 2
p

1
22r 1

q 1
22r 2

(1 − p)
(7)

and the condition in Theorem 1 reduces to

|λ|2ρ(H ) =
|λ |2

2
tr(H ) +

|λ |2

2
tr(H )2 − 4det(H ) < 1, (8)

where tr(H ) and det(H ) denote the trace and determinant of

H , respectively. The special case where r1 = 0 and r2 = r

was previously studied in [27] where, by following a different

approach, the authors proved that necessary and sufficient

condition for stabilization is that

E
|λ|2τ

22r
< 1. (9)

Here τ denotes the “hitting time” of state r , i.e., the time be-

tween two consecutive visits of that state, and the expectation

is taken with respect to τ . Intuitively, this condition says that

r should be large enough to compensate for the expansion of

the state during the time in which packets are erased and thus

no information can be sent from the observer to the controller.

Condition (9) simplifies to

|λ|2 <

1
tr(H )

if det(H ) = 0,

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
otherwise,

where H is given by (7) with r1 = 0 and r2 = r . Observe

that

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
= 2

tr(H )+
√

tr(H )2− 4det(H )
,

so (8) is equivalent to (9) and our result recovers the one

in [27] in the special case where r1 = 0 and r2 = r .

Taking the limit r → ∞ , we have that det(H ) → 0

and tr(H ) → 1− q, and so the above inequalities simplify to

the condition (1 − q)|λ|2 < 1, which means that the stability



Previous results as special cases

• Two-state Markov channel

Markov Jump Linear Systems.

Consider the scalar MJLS defined by

zk+ 1 =
|λ|

2R k
zk + c, (3)

where zk ∈ R with z0 < ∞ , c > 0 is a constant, { Rk } k≥ 0 is

the Markov rate process described above. Let H be the n × n

matrix with nonnegative real elements

hi j =
1

22r j
pj i , (4)

for all i , j ∈ { 1, . . . , n} . The following lemma states the

necessary and sufficient condition for the mean square stability

of the system (3) in terms of the unstable mode |λ| and the

spectral radius of H . The spectral radius ρ(·) of a matrix is

the maximum among the absolute values of its eigenvalues.

Lemma 1: Necessary and sufficient condition for the mean

square stability of the system (3) is that

|λ|2 <
1

ρ(H )
.

The proof of the above lemma is omitted as the claim is a

special case of [4, Theorem 3.9] and [4, Theorem 3.33].

III. SCALAR SYSTEM

Consider the special case of a scalar system

xk+ 1 = λxk + uk + vk , yk = xk + wk , ∀k ∈ N. (5)

where |λ| ≥ 1.

Theorem 1: Under assumptions A0-A3, there exists a con-

trol that stabilizes the scalar system (5) in mean square sense

if and only if the MJLS (3) is mean square stable, that is, if

and only if

|λ|2 <
1

ρ(H )
. (6)

Remark 1: In the above condition the unstable mode of the

system and the channel properties are decoupled. This means

that for a given Markov rate process there exists a threshold

above which the system cannot be stabilized by any control.

Application of Theorem 1 yields the following results as

special cases.

a) Constant rate. When the channel supports a constant

rate r , we have that H = 1/ 22r and thus (6) reduces to the

well known data rate theorem condition

r > log |λ|

derived in [18], [25].

b) Independent rate process. Consider the special case of

an i.i.d. rate process Rk where Rk ∼ R has probability mass

function pi = P{ R = r i } , r i ∈ R . In this case, letting p =

(p1, . . . , pn )T and h = (2− 2r 1 , . . . , 2− 2r n )T ,

H = p1, . . . , pn
T

2− 2r 1 , . . . , 2− 2r n = phT

.

p

1− p1− q

q

0 r

Fig. 2. A two-state Markov chain modeling a bursty packet erasure channel.

is a rank-one matrix whose only nonzero eigenvalue is hT p.

Therefore, Theorem 1 yields the result in [16], [17],

|λ|2ρ(H ) = |λ|2 2− 2r 1 , . . . , 2− 2r n p1, . . . , pn
T

= E
|λ|2

22R
< 1.

If we further specialize to the case n = 2, r1 = 0, r2 = r ,

and we let r → ∞ , then the stability condition p1 > 1/ |λ|2

depends only on the erasure rate of the channel, i.e. we recover

the packet loss model result in [8].

c) Two-state Markov process. In the special case illustrated

in Fig. 2 in which n = 2, p12 = q, and p21 = p for some

0 < p, q < 1, we have

H =
1

22r 1
(1 − q) 1

22r 2
p

1
22r 1

q 1
22r 2

(1 − p)
(7)

and the condition in Theorem 1 reduces to

|λ|2ρ(H ) =
|λ |2

2
tr(H ) +

|λ |2

2
tr(H )2 − 4det(H ) < 1, (8)

where tr(H ) and det(H ) denote the trace and determinant of

H , respectively. The special case where r1 = 0 and r2 = r

was previously studied in [27] where, by following a different

approach, the authors proved that necessary and sufficient

condition for stabilization is that

E
|λ|2τ

22r
< 1. (9)

Here τ denotes the “hitting time” of state r , i.e., the time be-

tween two consecutive visits of that state, and the expectation

is taken with respect to τ . Intuitively, this condition says that

r should be large enough to compensate for the expansion of

the state during the time in which packets are erased and thus

no information can be sent from the observer to the controller.

Condition (9) simplifies to

|λ|2 <

1
tr(H )

if det(H ) = 0,

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
otherwise,

where H is given by (7) with r1 = 0 and r2 = r . Observe

that

tr(H )−
√

tr(H )2− 4det(H )

2det(H )
= 2

tr(H )+
√

tr(H )2− 4det(H )
,

so (8) is equivalent to (9) and our result recovers the one

in [27] in the special case where r1 = 0 and r2 = r .

Taking the limit r → ∞ , we have that det(H ) → 0

and tr(H ) → 1− q, and so the above inequalities simplify to

the condition (1 − q)|λ|2 < 1, which means that the stability

• Data rate theorem further reduces 

to

• From which it follows



What next

• Is this the end of the journey? 

• No! journey is still wide open

• … noisy channels, beyond erasures



Discrete memory-less channel (DMC) 

• The communication channel is a stochastic system described by 

the conditional probability distribution of the channel output given 

the channel input

• Need to keep track of the state in the presence of decoding errors



Insufficiency of Shannon capacity

• Example: i.i.d. erasure channel

• Data rate theorem:

• Shannon capacity:



Capacity with stronger reliability constraints

• Shannon capacity       soft reliability constraint 

• Zero-error capacity       hard reliability constraint

• Anytime capacity         medium reliability constraint 

Sahai-Mitter (IEEE-IT 

2006)



Alternative formulations

• Undisturbed systems

• Tatikonda-Mitter (IEEE-AC 2004)

• Matveev-Savkin (SIAM-JCO 2007)

a.s. stability

Anytime reliable codes: Shulman (1996), Ostrovsky, Rabani, Schulman 

(2009), Como, Fagnani, Zampieri (2010), Sukhavasi, Hassibi (2011)

a.s. stability

• Disturbed systems (bounded)

• Matveev-Savkin (IJC 2007)

moment stability

• Sahai-Mitter (IEEE-IT 2006)



The Bode-Shannon connection

• Connection with the capacity of channels with feedback

• Elia (IEEE-TAC 2004)

• Ardestanizadeh-F (IEEE-TAC 2012)

• Ardestanizadeh-Minero-F (IEEE-IT 2012)



Control over a Gaussian channel

Instability

Power constraint

Complementary sensitivity function

Stationary (colored) Gaussian noise



• The largest instability U over all LTI systems that can be stabilized by 

unit feedback over the stationary Gaussian channel, with power 

constraint P corresponds to the Shannon capacity CF of the stationary 

Gaussian channel with feedback [Kim(2010)] with the same power 

constraint P.

Power constraint

Feedback capacity

Control over a Gaussian channel



Communication using control

• This duality between control and feedback communication for Gaussian 

channels can be exploited to design communication schemes using control 

tools 

• MAC, broadcast channels with feedback

• Elia (IEEE-TAC 2004)

• Ardestanizadeh-Minero-F (IEEE-IT 2012)



Summary of results



Conclusion

• Data-rate theorems for stabilization over time-varying rate channels, after 

a beautiful journey of about a decade, are by now fairly well understood 

• The journey (quest) for noisy channels is still going on

• The terrible thing about the quest for truth is that you may find it

• For papers: www.circuit.ucsd.edu/~massimo/papers.html


