Elements of information theory for

networked control systems

Massimo Franceschetti
PhD School on Control of Networked and Large-Scale
Systems, Lucca, Italy, July 2013




Motivation

Computation

Systems



Motivation

Janmary 2007 | Volame 95 | Number 1

PrOCEEdingS,‘,‘f[IEEE IEEE TRANSACTIONS ON

AUTOMATIC CONTROL

SPECIAL ISSUE A PUBLICATION OF THE IEEE GONTROL SYSTEMS SOCIETY
Technology of Networked &
Control Systems e e e e

Current Research & Future Trends
Networked Real-Time Systems « Wireless Networks

T, Simsek, Varsiya 1598

IEEE JOURNAL ON

SELECTED AREAS IN
January 2012 COMMUNICATIONS

@ lE E E Transactions on Control of Network Systems

January 2014



Motivation







Motivation




Abstraction

1

L A

noise

digital
channel

Channel quality

A

A ctuators

disturbance

:

Dynamical
Systeim

Controller

Y

Time

AD

'J

=
.

"Bl

—_—
[

channel

g

oise



Problem formulation

* Linear dynamical system

Tr+1 = Axi+ Bug+ vg,
yr = O+ wi
A composed of unstable modes | > 1,--- ,|A,| > 1

« Time-varying channel

Slotted time-varying channel evolving at the same time
scale of the system



Problem formulation

Objective: identify the trade-off between system’s unstable
modes and channel’s rate to guarantee stability:

sup ||zx| < oc
k
or

sup E[[}z. ] < o0



In the literature...

« Two main approaches to channel model

Information-theoretic approach (bit-rate)

Network-theoretic approach (packets)




Information-theoretic approach

« Avrate-based approach, transmitR; bits/time

« Derive data-rate theorems quantifying how much rate is needed to
construct a stabilizing quantizer/controller pair

Rate
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Network-theoretic approach

« A packet-based approach (a packet models a real number)

« Determine the critical packet loss probability above which the system
cannot be stabilized by any control scheme

Rate

Time



Information-theoretic approach

« Tatikonda-Mitter (IEEE-TAC 2002)

Rate processtk R = R known at the transmitter
Disturbances and initial state support: bounded

Data rate theorem:R > R. = log ||

a.s. stability

-

Rate

) Time
» (Generalizes to vector case as:

R > Z m,, log |\, |



Information-theoretic approach

* Nair-Evans (SIAM-JCO 2004, best paper award)

Rate processyk R, = R known at the transmitter
Disturbances and initial state support: unbounded
Bounded higher moment (e.g. Gaussian distribution)
Data rate theorem:R > R, = log | Al

Second moment stability

-

Rate

» (Generalizes to vector case as: Time
R > E m,, log |\, |
U



Intuition

« Want to compensate for the expansion of the state during the
communication process

« At each time step, the uncertainty volume of the state

TIA2 ] 2728

« Keep the product less than one for second moment stability

R > log |\

A
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State variance instability ‘/ R-bit message |:| 2—2R

- T




Information-theoretic approach

« Martins-Dahleh-Elia (IEEE-TAC 2006)

Rate process:R;}  I.l.d process distributed as R

Disturbances and initial state support: bounded

Causal knowledge channel: coder and decoder have knowledde; of_,
Data rate theorem:A\|°E [272F] < 1

Second moment stability

A

Rate
R1

Scalar case only Time



Intuition

« At each time step, the uncertainty volume of the state

T |)\|2 l 2—25’,?;

« Keep the average of the product less than one for second

moment stability
AIPE [2728] < 1

State variance ] A il

Rate R; ‘/1‘ Rate R, l ‘/1‘
|:| 2R, |% 2R,




Information-theoretic approach

* Minero-F-Dey-Nair (IEEE-TAC 2009)

Rate process: Ry} i.i.d process distributed as R

Disturbances and initial state support: unbounded

Bounded higher moment (e.g. Gaussian distribution)

Causal knowledge channel: coder and decoder have {R;}%_,
knowledge of \)\|2E [2—2R] <1

Data rate theorem:

Second momerdt stability
Rate R1

N
>

Time
« Vector case, necessary and sufficient conditions almost tight




Proof sketches

« Necessity: Using the entropy power inequality find a recursion
E[z2] > |\|? E[272%] E[z%?_,]+ const
Thus,

sup [r7] < oo = [A*E[27%] < 1
k

« Sufficiency: Difficulty is in the unbounded support, uncertainty
about the state cannot be confined in any bounded interval,
design an adaptive quantizer, avoid saturation, achieve high
resolution through successive refinements.



Proof of sufficiency

» Divide time into cycles of fixed length  (of our choice)

* Observe the system at the beginning of each cycle and send an initial
estimate of the state

Quantize Quantize

1 | 2 EEE IT—1| T Ifr+1| I27_1

- -— —~a -
reﬁnements reﬁnements

« During the remaining part of the cycle “refine” the initial estimate

 Number of bits per cycle is a random variable dependent of the rate
process

» Use refined state at the end of cycle for control



Adaptive quantizer

« Constructed recursively

L

Ry = 1-bit
R = 2-bit
R = 3-bit

'

R, = 4-bit
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Successive refinements: example

« Suppose we need to quantize a positive real value

 Attime k = 1 suppos®; = 1
* With one bit of information the decoder knows that> ()




Successive refinements: example

Attime . — 9 SUPPOSR, — 2

Partition the real axis according to the adaptive 3-bit quantizer
Label only the partitions on the positive real line (2 bits suffice)

After receiving 01 the decoder knows thate [1/2,1) , thus the initial
estimater € [0,00)  has been refined

« The scheme works as if we knew ahead of time tifat + R, = 3

X
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Proof of sufficiency

* Find a recursion for E[z?2 ]
2 1 < E[RE]) g2
Elz:. ] < const 53R (1), ] + const

 Thus, forr large enough

2 29\ T
E[&} <1 = const (E [&}> <1

22R

Quantize Quantize

1, 2, ... =1 7 741 ... 27-1

- -— —~a -
reﬁnements reﬁnements



Network-theoretic approach

A packet-based approach (a packet models a real number)

] oo wop.1-—p
Rk{ 0 w.p.p

Rate

Time



Critical dropout probability

« Sinopoli-Schenato-F-Sastry-Poolla-Jordan (IEEE-TAC 2004)
» Gupta-Murray-Hassibi (System-Control-Letters 2007)

p<pc:#

A
Rate

Time
» (Generalizes to vector case as;:

p < Pc = max; EMIE



Critical dropout probability

« (Can be viewed as a special case of the information-theoretic
approach

« Gaussian disturbance requires unbounded support data rate
theorem of Minero, F, Dey, Nair, (2009) to recover the result

=
E[f‘Q—L] —p‘}'] + (1 — p) |;2|T <1

1
5 — OO

— p< e as



Stabilization over channels with memory

« Gupta-Martins-Baras (IEEE-TAC 2009)

Network theoretic approach
Two-state Markov chain

m

» Critical “recovery probability”

1
A%

qg>q.=1



Stabilization over channels with memory

* You-Xie (IEEE-TAC 2010)

Information-theoretic approach

Two-state Markov chain, fixed R or zero rate
Disturbances and initial state support: unbounded
Let T be the excursion time of state R

w

 Data-rate theorem
R> R, = Llog E[|,\|2T]

« For R — oo recover the critical probability> q. =



Intuition

« Send R bits after T time steps

* In T time steps the uncertainty volume of the state

TIAPE [ 272F

« Keep the average of the product less than one for second
moment stability

1
R > 5 log E[|A|**]

A
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State variance T time steps ‘/1 R-bit message |:| 9—2R
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Stabilization over channels with memory

* Coviello-Minero-F (IEEE-TAC 2013)

Information-theoretic approach
Disturbances and initial state support: unbounded

Time-varying ratéy € {r1,--- .7}
Arbitrary positively recurrent time-invariant Markov chain of n

stafes= P{Rp+1 = 7j|Rr =1}
F
« Obtain a general data rate theorem that recovers all previous
results using the theory of Jump Linear Systems



Markov Jump Linear System

« Define an auxiliary dynamical system (MJLS)

z — |/\|z + c

zg < oo,c >0

State variance

Rate r, ‘ A




Markov Jump Linear System

« LetH bethen X =  matrix defined by the transition probabilities

and the rates

] 1
big = %pji

* Let r(H) be the spectral radius of H

+ The MJLS is mean square stable ]ff\z r(H)<1
« Relate the stability of MJLS to the stabilizability of our system



Data rate theorem

« Stabilization in mean square sense over Markov time-varying
channels is possible if and only if the corresponding MJLS is
mean square stable, that is:

A?p(H) < 1



Proof sketch

The second moment of the system state is lower bounded
and upper bounded by two MJLS with the same dynamics

Lower bound: using the entropy power inequality

E[|z|?] > 5 E[zk] Vk >0

|)\| h(xo)

Zk+1—zﬁ, Zk T C 2o =€

— |\?p(H) < 1 is a necessary
condition

3{::

e (w)



Proof sketch

Upper bound: using an adaptive quantizer at the beginning of each cycle
the estimation error is upper bounded as

El|zjr — &;-|°] < E[2%,] 4+ const

where

L (Al
5T = ¢2R(j—1)T+~~-+ij—1 “(G=1)7 ¢ > 1
This represents the evolution at time27, 37 . . . of a MILS

A sufficient condition for stability of 2.} is
#*TINPp(H) < 1



Proof sketch

Assuming |\|?p(H) < 1

Can choose 7 large enough so that
$*TIAPp(H) < 1

MJLS{zk} IS stable

Second moment of estimation error at the beginning of each cycle is
bounded

The state remains second moment bounded.



Previous results as special cases

% Coviello, Minero, F (2011)

Tatikonda, Mitter (2002) Gupta Murray Hassibi (2007) You Xie (2010)
Nair Evans (2004) [Gupta Martins Baras (2009) e
(2006)
(2009)

Martins Dahleh Elia (2006
Minero, F, Dey, Nair (2009



Previous results as special cases

 |id bit-rate

« Data rate theorem reduces to

|)‘|2/9(H) — |)‘|2(2_2T13 T 32_25'1'“)(7313 T apn)T
= |A’E[272%%] < 1

Recover Minero, F, Dey, Nair (2009)



Previous results as special cases

Two-state Markov channel
P
v
q

Data rate theorem reduces to

AP I)\I2

IA%p(H) = VTr (H)2 —4 det(H) < 1



Previous results as special cases

e Two-state Markov channel

r1 =0, ro=r

P
~_ 7
q

 Data rate theorem further reduces
o 1 1f d t(H) 0
1 c ==
|)\|2 <{ tr(H)

tr(H)—+/tr(H)—4 det(H)
2 det(H)

otherwise

*  From which it follows

1
r> g log E[|A|*!]

recovering You, Xie (2010)



What next

 Is this the end of the journey?

* No! journey is still wide open
* ... noisy channels, beyond erasures



Discrete memory-less channel (DMC)

- PO -

 The communication channel is a stochastic system described by
the conditional probability distribution of the channel output given
the channel input

* Need to keep track of the state in the presence of decoding errors



Insufficiency of Shannon capacity

Example: i.i.d. erasure channel
r w.p. 1—
Ry ~ R — { p. 1—p

0 wp.p

Data rate theorem:

APE(272F) < 1 1 = (277 (1-p) +p) <1

as 7 — o0 p<W

Shannon capacity:

C=(01-p)r—o0




Capacity with stronger reliability constraints

Sahai-Mitter (IEEE-IT
2006)

« Shannon capacityy  soft reliability constraffy.,, — 0
« Zero-error capacity’y hard reliability constraift,.,. = 0
* Anytime capacitycy, medium reliability constraint

P((Mok, - - -, Myy,) # (Mo, ..., Mg)) = O(27%%)  for all d < k

C'a(a) = sup(r, a)
Co<Ca<C
Ca(0) =C, Ca(x)=Cy



Alternative formulations

« Undisturbed systems
« Tatikonda-Mitter (IEEE-AC 2004)
« Matveev-Savkin (SIAM-JCO 2007)

C' > log |\| a.s. stability

« Disturbed systems (bounded)
 Matveev-Savkin (1JC 2007)

Co > 10g |/\| a.s. stability

« Sahai-Mitter (IEEE-IT 2006)
C'a(nlog|A|) > log|\| moment stability

Anytime reliable codes: Shulman (1996), Ostrovsky, Rabani, Schulman
(2009), Como, Fagnani, Zampieri (2010), Sukhavasi, Hassibi (2011)



The Bode-Shannon connection

« Connection with the capacity of channels with feedback

« Elia (IEEE-TAC 2004)
« Ardestanizadeh-F (IEEE-TAC 2012)
» Ardestanizadeh-Minero-F (IEEE-IT 2012)




Control over a Gaussian channehrdestanizadeh, F (2012)

L
‘ Lty | e }{J[;\' ¥
-L{z} | \J_/I
1

U = Z log |A;| Instability
icu

1 Q , i
%/ |T(e3'“")|2SZ(w)dw§P Power constraint

T(z) = L(z) Complementary sensitivity function
1+ L(z)

Z; Stationary (colored) Gaussian noise



Control over a Gaussian channelArdestanizadeh, F (2012)

M

Encoder

M

A

E(X7) < P Vi Power constraint

(' Feedback capacity

supU = CF
L

Decoder

M

The largest instability U over all LTI systems that can be stabilized by

unit feedback over the stationary Gaussian channel, with power
constraint P corresponds to the Shannon capacity Cr of the stationary

Gaussian channel with feedback [Kim(2010)] with the same power
constraint P.



Communication using control

« This duality between control and feedback communication for Gaussian
channels can be exploited to design communication schemes using control
tools

e MAC, broadcast channels with feedback

« Elia (IEEE-TAC 2004)
» Ardestanizadeh-Minero-F (IEEE-IT 2012)



Summary of results

Condition Channel Stabilization Disturbance
cCz2U DMC a.s. 0

CozU DMC a.s bounded
Ca(nlog|A|) = nlog|A| DMC 1-moment bounded
AP (1—-p)+p)<1 Erasure 274 moment unbounded
C>U AWGN N-moment unbounded
Cr =supU ACGN 2" moment 0




Conclusion

« Data-rate theorems for stabilization over time-varying rate channels, after
a beautiful journey of about a decade, are by now fairly well understood

* The journey (quest) for noisy channels is still going on

* The terrible thing about the quest for truth is that you may find it

 For papers: www.circuit.ucsd.edu/~massimo/papers.html



