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Wireless sensor networks Swarm robotics

Smart grids Water distribution
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AtaleZ) Scientific context
| IR

Tom local interactions

COOPERATION: Simple global behavior

Flocking: collective animal behavior given by the motion of a
large number of coordinated individuals
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Social and economic networks: individual social and economic
interactions produce global phenomena

Graph describing friendship relations in an high school
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@42 Problem description

-

The object of our investigations is to study the behavior of “complex” systems
constituted by the interconnection of many units which are themselves dynamical
systems.

The behavior of these systems will depend on the dynamics of the units and on the
interconnection topology. We want to understand how these two features produce the
global dynamics.
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A remarkable solution of a question of this type (stability) can be found in
JA Fax, RM Murray - IEEE Transactions on Automatic Control, 2004 Information flow
and cooperative control of vehicle formations
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Advantages: intrinsic robustness and adaptivity due to redundancy
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y(s,1
>0 (1)
ESTIMATOR S
t = time

s = space variable
y(s,t) = time-varying spatial data
z(t) = time-varying data base decision
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N >s Multi-agent systems architecture for
A \\é distributed estimation
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The consensus algorithm

Main idea: Having a set of agents to agree upon a certain value (usually
global function) using only local information exchange (local interaction)

|

iz, Distributed computation of general
functions

e Computational efficient (linear &
asynchronous)

\ ®|ndependent of graph topology

®|ncremental (i.e. anytime)

®Robust to failure

|
O

xr; 1S the estimates
of x of the node 72

r= f(y1,...,yn) =F (]i[ ZGz(yz))
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A distributed algorithm is said to
reach the consensus if

z;(t) — «

0 10 20 ~ 30
Consensus Iteration
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The consensus algorithm

GOAL: each node has to obtain the average of y,,...,yy\, Where y. is known
only by the node i. This task has to be performed in a distributed way.

ALGORITHM: Each sensor produces at time t an estimate x;(t) of the average
as follows

— Z Piix;(t) x(0) =y,

COMMUNICATION: x;(t) needs to be transmitted from the node i to the
node j iff

P # 0
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Assume P stochastic. If P; > 0 for all i and the graph Gp associated with P is
strongly connected, then all estimates converge to the same value (consensus)

xi(t) — Z 1% (0)

where the weights (4 are nonnegative and sum to one.
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The consensus algorithm

In case P is stochastic as well (for instance if P is symmetric), then pj = 1 /N and so

0() — 1 O ()

This idea can be used as a way for computing averages and more in general to compute

functions like
f(ylv'”ayN ( ZG yl)

* Computational efficient (linear & asynchronous)

* Independent of graph topology

* Incremental (i.e. anytime)

Robust to failure
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N\ N )\ Some literature (limited to the control field)
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Convergence of Markov Chains (60’s) and Parallel Computation Alg.(70’s)

John Tsitsiklis “Problems in Decentralized Decision Making and Computation ”, Ph.D thesis, 1984
Time-varying topologies (deterministic worst-case analysis)

P> Convergence: Moreau (2005), Jadbabaie, Lin, Morse (2002), Olfati Saber, Murray (2004), Cao, Morse, Anderson
(2008), . . ..

Randomized consensus

P> Convergence: Y. Hatano and M. Mesbahi,(2005), Wu (2006), Boyd, Ghosh, Prabhakar, Sha (2006), Alireza Tahbaz-
Salehi, Ali Jadbabaie (2006),

2 Performance: Boyd, Ghosh, Prabhakar, Sha (2006), Patterson, Bamieh, Abbadi (2007), Fagnani, Zampieri, (2007)
Applications

2 Vehicle coordination: many contributions

P> Distributed Kalman Filtering: Xiao, S. Boyd, and S. Lall. (2005), Olfati Saber (2005), Alighanbari, How (2006), Carli,
Chiuso, Schenato, Zampieri (2008), Alriksson, Rantzer (2006), Spanos, R. Olfati-Saber, and R. M. Murray.(2005), |.D.
Schizas, G.B. Giannakis, S. |. Roumeliotis, and A Ribeiro.(2007), A. Speranzon, C. Fischione, and K. Johansson
(20006)

P> Generalized means: Bauso, L. Giarre’, and R. Pesenti (2006),Cortes (2008)

P> Time-synchronization: Solis, Borkar, Kumar (2006), Simeone, Spagnolini (2007), Carli, Chiuso, Schenato, Zampieri
(2008), Schenato, Fiorentin (2009)

P> Sensor and camera network calibration: Barooah, Hespanha (2005) ,Bolognani, DelFavero, Schenato, Varagnolo
(2008), Tron, Vidal (2009)
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Rate of convergence, mixing rate of a Markov chain, spectral gap and essential
spectral radius of a stochastic matrix (from the 70’s)

B> Cayley graphs: Diaconis (1990-2000), Carli, Fagnani, Speranzon, Zampieri (2008).
> Random geometric graph: Boyd, Ghosh, Prabhakar, Sha (2006).

2 Performance Classical literature of Markov chains (Diaconis, Stroock), Xiao, Boyd (2006), B.
Bamieh, M. Jovanovic, P. Mitra, and S. Patterson. (2010)

L2 performance metrics
P General considerations: Xiao, Boyd, Lall, Diacomis, Kim (2004-2009).

P> Cayley graphs: Bamieh, Javonovic, Mitra, Patterson (2009), Carli, Z. (2008), Garin, Zampieri
(2009).

> Random geometric graph: Barooah, Hespanha (2004-2009), Carli, Lovisari, Zampieri (2010).
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\\\\ The consensus algorithm

<

Idea for the proof of convergence:

Convex hull always shrinks.
If communication graph sufficiently connected, then shrinks to a point
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Idea for the proof of convergence:

Convex hull always shrinks.
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where K is a Laplacian of a graph (the matrix | — €K is stochastic).

x(t) = Kx(t)

in which P(t) is a matrix values stochastic process, e.g. independent and
identically distributed.
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‘Higher order‘(Synchronization) xi(t) € R"

xi(t+ 1) = Ax;(t) + Bu;(t)
yi(t) = Cxi(t)

with feedback control

ui(t) = Z Kiy;(t)

where K € RN*N js the Laplacian of a graph.

y;(t) — «
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‘NonIinear‘(Synchronization) xi(t) € R"

xi(t+ 1) = fxi(t)) + g(xi(t) )ui(t)
yi(t) = h(xi(t))

with feedback control

N

ui(t) = > Ky, (t)

j=1

where K € RN*N js the Laplacian of a graph.

yi(t) — «
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AN i Example: vehicle formation
A WA 1 I e

7 =

Assume we have N vehicles moving on the plane. Each vehicle has coordinates
zi(t) = (xi(t),y.(t))". The goal is the rendezvous of the vehicles in one point
of the plane (can be generalized to formation reaching).

Solution:
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Example: distributed estimation

Assume that N sensors have to estimate a quantity x € R from their noisy
measurements. he result of the measurement of the sensor i is

‘n:x+m‘

where n; are independent noises of zero mean and variance |. The best esti-
mate of x from the measurements is

X = %Zy,'

- Q Sensor

: Communication link
-
Sensing link

>
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f1 \\\\\ \ ,34\ Example: distributed least square

Assume that each sensor | measures two variables Xx;, y; and that the
relation between these needs to be estimated. The relation is mod- 1Y
eled by a finite dimensional function space

— ; e,fl.(X) 7> S
. : &

where the functions f;(x) form the basis of the function space. We
need to estimate the coefficients ;.. We can write

where

PROBLEM: Determine

N
O := argming Z(yi — F'(x,)©)?
=1
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AR Example: distributed least square

SOLUTION

average
consensus

M,(O) _ F(X,')FT(X,') c RNXN ﬁM,(OO) — N

average
consensus N

V,'(O) — F(X,')y,- c R" ﬁ V,'(OO) = %ZF(X:))’,
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SOLUTION

average
consensus
M) =(Fx)F o)< B s )
Initial knowledge
of the node ¢ Final knowledge
> averdge of the node ¢

vi(0) R” m vi(c0)
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m\ Example: distributed least square

-uﬁ-

According the theory of least square optimization we have that

1y
| o - | N
o L 1 |
B (N ZF(X’)F (X’)> (N ZF(X')y') ................... o
i=1 i=1 o = A
& S
SOLUTION /
O
average

consensus

Initial knowledge

of the node ¢ - Final knowledge
avetage of the node ¢

v.(0) R” m vi(0)

A

© = (Mi(00)) ™" vi(o0)
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Example: distributed calibration

From Barooah and Hespanha

Assume we have a graph G = (V,E) with vertex set V = {I,... N} and edge set
E C V x Vand also a set of numbers b; ;) for all (i,j) € E. Ve want to estimate
absolute values from differences, namely

Z|II.1.i.I;N Z C(’af) (Zi o Zj - b(i’j))z
n (i,j)EE

where C; ;y are weights.
In vector form this becomes

min ||Az — b||Z
y4

where A is the incidence matrix of the graph (a suitable |E| x |V| matrix with O, |, —1)
and where C = diag{C, : e € E}.

5th HYCONZ2 PhD School



Example: distributed calibration

To make this problem having a unique solution we add the condition

min ||Az — b||2
Z,'lZZ,':O

The solution is given by A distributed way to obtain the solution z is through a "consensus”
type algorithm

z(t+ 1) = Pz(t) + aA'Cb
z(0) =0

where P = | — aA"CA is a symmetric stochastic matrix and where « is a positive constant. If
we define x(t) := z — z(t), we have that

and so
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N sensors can estimate x though a binary random variable y. which
are conditional independent and with conditional probabilities |

Ply,=I|x=0) =Py, =0|x=1) =

Plyy=0x=0) =Py, =llx=1)=1—¢
It can be seen that the normalized log-likelihood function is Yi
| P(Oly;, -~ ,yN) | | — e Y2
L(y.,...,yn) = — log = (I —2y.)log "4
| N N P(Hyr -+ 5 yn) NZ €i
X

Xx=0<<= L(y,,-..,yy) >0

YN

5th HYCONZ2 PhD School



Pros and cons

Advantages

|. Very robust to node and link failures.
2. Very simple implementation.

3. No need of a centralized design for the weights selection.

Disadvantages

|. Can have slow convergence for some class of communication topologies.

2. Might be sensitive to malicious nodes.
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Performance indices

|. Steady state performance: The difference between p; and | /N.

2. Transient performance: Speed of convergence of x;(t) to x;(c0).
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MR 2N Performance metrics
o/ \n

xi(t) — Z 1% (0)

From the theory of Markov chains

|. The vector (i, ..., uN) is the invariant measure of
the Markov chain. Therefore p; = | /N if and only

if P is doubly stochastic (P, P" are both stochastic).

2. The convergence is exponential with rate given by
p(P) the second largest eigenvalue of P.

P) = A
p(P) ,\ef%%}\({.}‘ |

where A(P) is the set of the eigenvalues of P.

v
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Performance metrics

There are two types of problems:

|. Optimization problems: find the matrix P in a class which opti-
mize the performance index.

2. Influence of the network topology: find how the network topol-
ogy influences the the performance index.

We consider the second type of problems and more specifically we are
interested in the influence of the number of nodes on the performance
for the various types of network topologies.
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Performance metrics

There is a huge literature which gives connections between the network
topology and the performance index p(P) essential spectral radius:

* Cheeger inequalities and expander graphs.
* Poincare’ inequalities.

* Random graphs: Erdos-Renyi graphs, small world graphs, random
geometric graphs.

These results are typically very hard and this performance metric is
quite difficult to analyse.
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Network topologies

We consider here network topologies coming from wireless sensor networks
applications, namely the geometric graphs

5th HYCONZ2 PhD School



Network topologies

Formal definition of geometric graphs (Doyle-Snell, Barooah-Hespanha)

A geometric graph is a graph deployed in R? characterized by five pa-
rameters:

* The edge length ¢ of an hypercube in which all the nodes lye.
* The minimum Euclidean distance s between two nodes.

* The maximum range of communication r.

* The radius v of the largest empty ball.

* The minimum p of the ratios between the graphical and the Eu-
clidean distance between nodes.

Examples: perturbed grids, random geometric graphs whp.
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Network topologies
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Network topologies
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Network topologies
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Network topologies
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Rate of convergence

THEOREM (Boyd, Ghosh, Prabhakar, Sha 2006, Lovisari, Zampieri 2011)

Let G be a d-dimensional connected geometric graph/grid/torus and
let P be any stochastic matrix compatible with G. Then

C/ C/ /

| N2/ < p(P) < | N2/

where N is the number of nodes and C’, C" are suitable constants.
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Rate of convergence
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Rate of convergence
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Rate of convergence
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Rate of convergence
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H* performance

Assume that the initial conditions are i.i.d. random variables x;(0) and
consider the following index

J(P) = E Zux —x(o0)|I

where || - || is the 2-norm.
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The same cost appears in a different context (Xiao, Boyd), (Bamieh,
Jovanovic, Mitra, Patterson) and (Carli, Frasca, Fagnani, Zampieri)

Assume that the standard consensus algorithm is corrupted by and i.i.d.
noise

x(t4+ 1) = Px(t) + n(t)

and consider the following index

J(P) := limsup E{[[x(t) — xa(0)1]

— 00

where x4(t) = 1/N > x;(t) is is the average of the components of x(t)
and 1 is the column vector with entries equal to 1.
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Consensus with noise
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Consensus with noise
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H* performance

Assume for simplicity that P is symmetric. Then

1 < 1
P) = — p=t— —11’
(P Ntrtz;( ! )
1 1
o N Z 1 — )\2
AEA(P)\{1}

where 1 is the column vector with all entries equal to 1.
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| 2 performance

THEOREM

Let G be a d-dimensional connected geometric graph/grid/torus and let P be
any symmetric stochastic matrix compatible with G. Then

C'N <J(P) < C'N ifd = |
C'log(N) < J(P) < C"log(N) ifd =2

c' <Jp) <’ ifd > 3

where N is the number of nodes and C', C" are suitable constants.
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Electrical network (Doyle, Snell)

|dea of the proof
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Electrical network (Doyle, Snell)

|dea of the proof

Z:= P symmetric stochastic matrix

~_

Electrical network with N nodes and conductance Z,,/2 between the
nodes u and v (namely resistance 2/Z,,).
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Electrical network (Doyle, Snell)

|dea of the proof

Z:= P symmetric stochastic matrix

~_

Electrical network with N nodes and conductance Z,,/2 between the
nodes u and v (namely resistance 2/Z,,).

~_

R, is the resistance of the electric network between the node u and
the node v.
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Electrical network (Doyle, Snell)

|dea of the proof

Z:= P symmetric stochastic matrix

~_

Electrical network with N nodes and conductance Z,,/2 between the
nodes u and v (namely resistance 2/Z,,).

~_

R, is the resistance of the electric network between the node u and

the node v.
~_
I
,I(P) — W ZRUV

u=v
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)
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“3;}%\2‘\ Electrical network (Doyle, Snell)

'.;""'

The potentlal v can be found by solving the equations

ATj — | Current Kirchhoff’s current law
CAv =j Ohm’s law
I"v =0 Condition to get uniqueness

where A is the incidence matrix of the graph and C is a diagonal matrix
having Z;/2 as diagonal elements. This equation is equivalent to the
following

ATCA 1] [v i
1" 0] |0 0

and so _ _
ATCA 1 i
0 1T 0 0

<
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@ \\\\ --'-;sj@;\ Electrical network (Doyle, Snell)
. )
V] [ATea u] T [i
o | 1" o |0
Notice that
ATCA=1-2Z

It turns out that

11—z 11" [GZ NI
ntoo0]  INTTIT 0
where —
e Zt 1 ]1]17- .
= Z TN Green function
t=0
Therefore
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Electrical network (Doyle, Snell)

A

— | Ampere | Ampere
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o) PP ) )
AO\lR  Electrical network (Doyle, Snell
W\ RS
J(P) = %tr G(P?)
-z 117" [G6Z N1
]1-,- 0 — N—l]lT 0
- "1 AT 1710
A'CA 1| |v| |i > vi [A'CA 1 i
_ ]1T O_ _O_ o O_ _O_ - ]IT O_ _O_
ATCA=1-2Z
Y |
, ATCA 1 G(z) N1
v=G(2)i < -
(£) _ 17 0 _N_1]1T 0
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‘x\:‘ﬂv:)%\\ :
\\%a  Electrical network (Doyle, Snell)

*\:\ .
JARNL
\\ ;\\*

Take i = e, — e, where e, is the column vector with all entries 0 expect for a
| in position u. Then the effective resistance between u and v is

Row = vy—v,= (e, — eV)Tv
= (e, —e,)'G(2)i
= (ey— eV)TG(Z) (ey — eu)

Therefore

|
N ZRW = 1 6(2)
u=£v
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W\l%2  Electrical network (Doyle, Snell)

. . . -
» ! - -
‘b S I
' \ ‘/s o 5 1

G(Z) ZZi(Zt—%]l]lT) j(P): #ZRUV
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Example: distributed estimation

Assume that N sensors have to estimate a quantity x € R from their noisy
measurements. he result of the measurement of the sensor i is

‘n:x+m‘

where n; are independent noises of zero mean and variance |. The best esti-
mate of x from the measurements is

X = %Zy,'

- Q Sensor

: Communication link
-
Sensing link

>
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2l g 5F "x‘\_ ’)5‘*..
. ’ . ’ A }
—\

) U\ \\ = E£xample: distriouted estimation

H\‘\ N

SOLUTION: Apply consensus algorithm to find an approximate value
of the mean

x(t+ 1) = Px(t)
x(0) =y

xi(t) >~ z := %Zyi

The natural performance index is the mean square estimation error
after t iterations

| 2
= N 2 Bl ~ 2
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Performance IN distributed estimation

It can be shown that (P symmetric)

J(P, 1) = ltr P2t — Z A2

)\EA(P)
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o 5
[ oy

Consider now a graph of N nodes which consists in two disconnected com-

plete graphs with N/2 nodes.

IR ;’y;’}t\\
\\\v P D] "///
T 7 SN

N *Z//\
ISR BSTIN
FL AKX PLOAIES

00 o @) vg Ouy

», \/ ‘5 AP g V \/
DX IAPLNS
ZATLAX IS

\\

C LA R

| KNV L '\“' XS\ LA
N N2V

In this case

Indeed we will never have consensus in this case. However

JPnst) =2/N, >
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\\ i Performance in distributed estimation

Consider the following N X N circulant matrix P

/3 1/3 0
1/3 1/3 1/3
0

/3 1/3 1/3 0

1/3
0

313 1)
0 1/3 1/3
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'\\\\\ \.' 4 Performance in distributed estimation

* The bigger is N, the bet-
ter is the performance J(Py;, t).

* If t < N/2 then

.I(PNvt)

:.I(Poovt)

0.32

0.24 1

0.2

J(Pyt)

0.16+

which implies that for bounded

t, growing N doesn't buy

any gain.

* For N, t big enough

J(PN, t) =~ max{

N’ Vi

}

0.12

0.08

0.04 -

0.28 7

0

1 N=6

| N=I2

N=18

jS—

| N=24

N:OO

N=30

0

20 40 60 80

100
time t

120

140

160

180

200
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\i\\;\i\l*ﬂ,{é{\ Performance in distriouted estimation
BN

4 Y’A" .‘,
N
el S A e
I ‘53
’ -
) |

Can be extended to the torus and the grid and to other geometric graphs
with symmetries, but we don't have similar results for more general geometric
graphs.
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G, is the graph associated with P(t)

Suppose that P;(t) > 0 for all i,t and that there
exists a T such that for all £ the graph

Ge =G UGmp1 U~ Gu_nr-1
Then
* xi(t) — a foralli.

* If moreover P(t) are all doubly stochastic,
then xi(t) — % >_ x;(0) for all i.

Estimates of rate of convergence are very conservative (worst case)

5th HYCONZ2 PhD School



AllS2  Time varying consensus algorithm
BV RN
C C
x(t+ 1) = P(t)x(t) £ N,

G, is the graph associated with P(t) *
Suppose that P;(t) > 0 for all i,t and that there
exists a T such that for all £ the graph o '

Ge:=GmUGrr1 U - Gu_1)1-1
Then
* xi(t) — a foralli.

* If moreover P(t) are all doubly stochastic,
then xi(t) — % >_ x;(0) for all i.

Estimates of rate of convergence are very conservative (worst case)
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A Performance of randomized consensus

1 '1"',' ©% ”
Al ) £ 54 .
‘ / \ 0. Ty
,“ ‘l)\‘. ) i ’ . ‘
A s 1 I
\ \ .’ . | * b ,
- - 5
X A _ M 5 —-—

thms

We now consider randomly time varying
stochastic matrices P(t) such that P(t); > 0
for all i, t. Ve obtain the system

x(t+ 1) = P(t)x(t)
PROBABILISTIC CONSENSUS
xi(t) — ¢ almost surely

where ¢ = > u;x;(0) and where p; are ran-
dom variables. Equivalent condition

Pit—1)---P(0) = 1p'

where 1 == (u1,...,um)" is a random
vector.

e Hatano Mesbahi

eBoyd, Ghosh, Prabhakar, Shah
e [ahbaz-Salehi, Jadbabaie

o Porfiri, Stilwell

e Kar, Moura

e Patterson, Bamieh, Abbadi
e\/\VU

eFagnani, Zampieri
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G D\ D .
At i3, Performance of randomized consensus
\\ A |
VAR G algorithms
o—>¢
We now consider randomly time varying %
stochastic matrices P(t) such that P(t); > 0 4 X
for all i, t. Ve obtain the system ‘
x(t4+ 1) = P(t)x(t) ' ‘
PROBABILISTIC CONSENSUS A , '
xi(t) — ¢ almost surely f
where ¢ = > u;x;(0) and where p; are ran-
dom variables. Equivalent condition eHatano Mesbahi
eBoyd, Ghosh, Prabhakar, Shah
P(t . 1) o P(O) N ]1,LLT e Tahbaz-Salehi, Jadbabaie
e Porfiri, Stilwell
T eKar, Moura
where p = (,ul, ‘e ,,LL/v|) is a random ePatterson, Bamieh, Abbadi
vector. oWu

eFagnani, Zampieri
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AN - Gossip algorithm Boyd et al. 2006)

Consider an indirected strongly connected graph . At each time step,
an edge (j, i) is chosen randomly among the edges of G with probability
p; > 0 and the following iteration is done

xi(t+1) = 1/2x(t) +1/2x(t)
xi(t+1) = 1/2x(t) + 1/2x(t)
Xh(t T ) — Xh(t) h # I,

~
~
~
\\\ ”’
\\ ”’
’ ) |
N ! €T t - ,
\ SO ) ; I
\ So , |
' \\ 7/ |
~ /7 ]
\ - ) — |
' \\ S - |
NV U |
| 1
| 1
4
\\ Ve |
4
1
4
\ / |
\ . J
/ 1
\ 7
\ Ve |
4 ) |
\ , B |
\ ,
e
7
'
T ’
——————————— O T
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ST Gossip algorithm Boyd et al. 2006)

Consider an indirected strongly connected graph . At each time step,
an edge (j, i) is chosen randomly among the edges of G with probability
p; > 0 and the following iteration is done

xi(t+1) = 1/2x(t) +1/2x(t)
xi(t+1) = 1/2x(t) + 1/2x(t)
Xh(t T ) — Xh(t) h # I,

v
’
- ’
4
\\ V2
~ ’
So . ,”’
S 4 _-
~ ’ - 1
\ RN , 1 !
\ RN 4 !
\ SO ’ !
~ 4 C
\ So 4 1
\ SO 4 1
\ . !
\ 7’ 1
7’
\ P 4 !
\ ’ 7’ 1
\ ’ 4 1
P 7’
\ , s 1
\ , :[7 . ,
\ s J 7 !
’
\ 7z !
\ 4 !
7’ s ]
\ ’ // /
\ 7’
’
’
,
- ’
___________ , ==
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ST Gossip algorithm Boyd et al. 2006)

Consider an indirected strongly connected graph . At each time step,
an edge (j, i) is chosen randomly among the edges of G with probability
p; > 0 and the following iteration is done

xi(t+1) = 1/2x(t) +1/2x(t)
xi(t+1) = 1/2x(t) + 1/2x(t)
Xh(t T ) — Xh(t) h # I,

v
’
- ’
4
\\ V2
~ ’
S , ’4”
~ Vi -
So p - 7
I ’ - )
’
v
\ S 1 - !
\ ~ - 1
\ = . _ - ,
\\ ,
\ SO 1
\ , !
\ 7’ 1
7’
\ P 4 !
\ ’ 7’ 1
, 7’
\ , s j 1
\ 7’ ’
\ s 7 !
’
\ 7z !
\ 4 !
7’ s ]
\ ’ // /
\ 7’
’
7
4
- ’
___________ , ==
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Gossip algorithm Boyd et al. 2006)

1
i 1/2 1/2
I
P(1) =
I
J 1/2 1/2
1
: 1-
z J
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Asymmetric gossip algorithm
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Consider an directed strongly connected graph . At each time step,
an edge (j, i) is chosen randomly among the edges of G with probability
p; > 0 and the following iteration is done

xi(t+1) = 1/2x(t) + 1/2x(t)
Xh(t—— 1) — Xh(t) h#l

—————————————— Q __-——_-—__
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7
7
7
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SN  Asymmetric gossip algorithr

Consider an directed strongly connected graph . At each time step,
an edge (j, i) is chosen randomly among the edges of G with probability
p; > 0 and the following iteration is done

xi(t+1) = 1/2x(t) + 1/2x(t)
Xh(t—— 1) — Xh(t) h#l

5th HYCONZ2 PhD School



SN  Asymmetric gossip algorithr

Consider an directed strongly connected graph . At each time step,
an edge (j, i) is chosen randomly among the edges of G with probability
p; > 0 and the following iteration is done

xi(t+1) = 1/2x(t) + 1/2x(t)
Xh(t—— 1) — Xh(t) h#l
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Asymmetric gossip algorithm

1
1
i 1/2 1/2
1
P(1) =
1
1
1
1_
J
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Broadcast communication

) ‘ . . "'ll ’.
L B " L A L 4
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——

Consider an directed strongly connected graph . At each time step, a
node i is chosen randomly and the following iteration is done

xi(t+1) = 1/2x(t) +1/2x(t) for all j neighbors of i
Xh (t T 1)

Xp () otherwise
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AN Broadcast communication

Consider an directed strongly connected graph . At each time step, a
node i is chosen randomly and the following iteration is done

xi(t+1) = 1/2x(t) +1/2x(t) for all j neighbors of i

xp(t+1) = xp(t) otherwise
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\\\\\2‘ Consensus with packet drops

Assume we start from the standard consensus algorithm

xi(t+1) =) Ppx(t)

Assume moreover that the binary random variables
Li(t), teN, ij=1,...,N

i # j, describe the packet loss, namely at time t the packet
fromjtoiis lost iff Ljj(t) = 0. Assume that those variable
are independent and that

PILit) =1]=p  PlL() =0 =1—p

In this case it is convenient to define, for i = 1,... N,
the binary random variable L;(t) which is equal to 1 with
probability 1.

Patterson, Bamieh, Abbadi
Fagnani, Zampieri
Preciado, Tahbaz-Salehi, Jadbabaie
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JRL B\

Examples

xi(t+ 1) = ZLU )x;(t

ZJEN JEN;

or
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AN \\ <2 Performance metrics

H\‘\ N

e Distance from the consensus

d(e) = lIx(0) — xa(0)]” = Z\x, (i

where x4 (t) = 1/N ) x;(t) is the average of the components of x(t).

* Distance from the average of the initial conditions

B(t) = |xa(t) — x4 (0)°

5th HYCONZ2 PhD School



(4 VLR (RS ) ot T
AN e Convergence
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THEOREM (Cogburn 1987)

Assume that P(t) are i.i.d. and that P;(t) > 0 almost surely. Then we have
probabilistic consensus iff P := E|P(t)| (which is always stochastic) yields de-
terministic consensus.
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Examples

Gossip algorithm

Assume that

PIP(t) =1—1/2(e; — ¢)(ei — ej)T] = Wi

Then

and so G5 = Gw. Moreover

Pi(t) > 1/2
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Examples

Packet loss
In this case

Pi(t) > 1/N

Moreover if i = jand (j, i) is an edge of the graph, then we have that

-

E

L;(t)

i D _hen, Lin(t) ]

L(t)
ZheN,- Lin (t)

L;(t)
ZheN,- Lin (t)

L;(t)
ZhENi Lin (t)
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Ul Rate of convergence
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THEOREM (Cogburn 1987)

Assume that P(t) are i.i.d. and that P;(t) > 0 almost surely. Then

1
lim P log ||x(t) — x(c0)|| = R}, almost surely
— 00

This means that almost surely for big t we have that

[x(t) — x(00)|| ~ C R,
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Rate of convergence

EXAMPLE Take the symmetric gossip algorithm with the complete graph and
N = 2" nodes and g = 1/2. It can be shown easily that the algorithm con-
verges in finite time ty and so R;is = 0

The time t4 is very big, namely
tgy >> N. Before reaching
the consensus we notice from
simulations a clear exponen-
tial convergence with a cer-
tain convergence rate that is
different form zero.

The picture shows the loga-
rithmic plot of the trajecto-
ries for N = &.

5th HYCONZ2 PhD School
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Al Rate of convergence
Let _
d(t) := E[d(t)]
where

d(t) = 5lIx(®) —x(o0)|I"
The rate of convergence of d(t) is different from the rate of convergence of d(t).

dt)/? ~ CR as.  d(t)Y?2 ~CR..  Rus # Rums

THEOREM Assume P(t) yields probabilistic consensus. Then

5%a(N)
[x(0)] \4t)

Plld(t) — d(t)| > 6] < exp (—

where the function a(N) depends on the probability distribution of P(t). |
Typically we have that a(N) = KN°. In this case, if N* /tis big, then P[|d(t) —d(t)| > 4]
is small and so

d(t)l/2 ~ El(t)l/2 ~ CR
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E[d(1))
where
A(t) :== E[P(O)'P(1)"--- Pt — 1)"QP(t — 1) - - - P(1)P(0)]

where A(0) := €). The dynamics is described by

At+1) = L(A(1))

The linear operator £ : RN*N — RN*N s given by

L(M) = E[P(0)' MP(0)]
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2200 GERNOM

N N\ \\ < Mean square analysis
1B N | =

Distance from the consensus

Linear dynamic system

At+1) = L(A®1)) A(0) := Q

where L := E[P"(0) ® P'(0)]. We have that
5(t) = vect(A(t))

Notice that L' is a stochastic matrix.
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EINR Mean square analysis

Distance from the consensus

We know that E|d(t)| converges to zero exponentially. Let

1
Rys := lim — log E|d(t)]

t—oo

Let Sym the be the set of N x N complex hermitian matrices.

PROPOSITION

* Lisym has only real eigenvalues.

* Rms is the second largest absolute value of the eigenvalues of £gy,.

PROPOSITION

= 2
o/ esr (P)” < Rpys < sr(L£(£2)) where esr(-) means second largest eigen-
value and sr(-) means the largest eigenvalue.
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Complete graph
* Gossip with probability p; = 1/N2

1
Rr?qs =1- =
N
* Packet drop
Rs = (1 — BN)(1 — )
where (5 := plE [2+[)1N_2} and by is the binomial random variable

namely a random variable taking value on {0, 1,... k} with law

Plb = i| = (k) b(1—pk i=0,1,... k
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et Distance of the consensus value from the
TN average

Observe that 3(00) = |xa(00) — xa(0)|? = |(u" — N"117)x(0)|?, and so

E[3(c0)] = x(0)"Bx(0)

where, if E|P(t)] is doubly stochastic,
B=E[un'] —N2117

Notice moreover that

1
W= E[up'] = 5 lim L)

and so W is the only matrix such that £L(W) = Wand 1'W1 =1
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A 25 Distance of the consensus value from the
(£ A e average

Observe that 3(00) = |xa(00) — xa(0)|? = |(u" — N"117)x(0)|?, and so

E[3(c0)] = x(0)"Bx(0)

where

1 1 _
B =E[uu'] - NE[M]lT - NlE[M]T +N7"117

When P is doubly stochastic, we obtain in particular
B=E[uu'| —N2117

Notice moreover that

L .
W= E[up'] = 5 lim L]

and so W is the only matrix such that £L(W) = Wand 1"W1 = 1
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EXAMPLE: ASYMMETRIC GOSSIP In this case, under the condition

N N
D Pi=)_b
=1 =1

the eigenvector of the operator £ can be computed explicitly and so we obtain that

1 1
B — | — —11"
N(N + 1) N

Notice that B converges to zero as N tends to infinity.
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EXAMPLE: PACKET LOSS WITH COMPLETE GRAPH: ERDOS RENIY GRAPH

It can be shown in this case that

1 1-—N 1
B b (I——llT)

T N1-B+1/N\ N
where B = pE |:2+b1N—2] and by is the binomial random variable namely a random
variable taking value on {0,1,... k} with law Plby = i| = (”() p'(1 —p) i =
0,1,...,k. Moreover, since 1_15_:’{3/,\] < 1, we have that

1 1
B< — (I— —11T)
N N

and so it tends to zero as N~ as N tends to oo.
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Higher order consensus

Problem Consider the following consensus algorithm

xi(h+1) = Ax;(h)+ Bu;(h)
yi(h) = Cxi(h)

ulh) = D" Kylh) Fi(h) —x(h)
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Higher order consensus

Problem Consider the following consensus algorithm

xi(h+1) = Ax;(h)+ Bu;(h)
yi(h) = Cxi(h)

D Ki(h) Fxi(h) —xi(h))[+-Exi(h)

<

=
-

N——"
|

5th HYCONZ2 PhD School



Higher order consensus

Problem Consider the following consensus algorithm

xi(h+1) = Ax;(h)+ Bu;(h)
yi(h) = Cxi(h)

D Ki(h) Fx(h) = x(h)) [-Bx(h)]

<

=
-

N——"
|

Determine conditions on the consensus matrix K(h) and on F, E ensuring that

yi(h) —y(h)| =0 Vij
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caii2) - Higher order consensus: another

e
\\ R example

It has been shown (Muthukrishnan, Ghosh, Schultz, 1998) that second order
consensus

x(h+ 1) = BPx(h) + (I — B)x(h—1)

may yield to faster convergence rate with a suitable choice of 3. Simulations
support that the same holds for consensus with (randomly) time varying graph

topology
x(h+ 1) = BP(h)x(h) 4+ (1 — B)x(h — 1)
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Higher order consensus: another
example

This can be seen as higher order consensus

xi(h+1) = Ax;(h)+ Bu;(h)
yi(h) = Cxi(h)

ulh) =" Ky(h) Flg(h) —xi(h) + Bx(h)
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Clock synchronization

time 4
estimate

time
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Clock synchronization

time 4 clock time profile
estimate

time
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time 4 clock time profile
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Clock synchronization
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time
estimate

Reference time profile

time
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Clock synchronization

>

time
estimate

Reference time profile

time
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Clock synchronization

time 4
estimate

Reference time profile

clock time profile
with time and slope
corrections

time
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Master slave architecture
(NTP time-synchronization
protocol)
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Leaderless distributed
architecture

5th HYCONZ2 PhD School



Clock synchronization

x;(t) is the time evaluation of the node i

>

Clock synchronization with no reference time
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Mathematical description of a clock

Each unit i has an oscillator with oscillator period A
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Gy ?‘g\ ) Mathematical description ot a clock

Each unit i has an oscillator with oscillator period A

From oscillator to counter -
We neglect the
t— 1

5i(t) = N -5 (1p)  ClOck quantization
I
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i 3\ Mathematical description of a clock
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=

Each unit i has an oscillator with oscillator period A

From oscillator to counter g
We neglect the

Si(t) — t;to | (tO) clock quantization >
i

N

From counter to time estimator (clock)

/ »A,— is the an estimate of A;
yi(t) = yi(to) + Ai(si(t) — si(to))
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\ Mathematical description of a clock

!LJ'

Each unit i has an oscillator with oscillator period A

From oscillator to counter -
We neglect the
t— 1

5i(t) = N -5 (1p)  ClOck quantization )
I

N

From counter to time estimator (clock)

yi(t) = y(to) + Ai(Si(t) —si(to))

— A\ is the an estimate of A;

We can have time
A. i(t dependent estimation
of the oscillator period
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@11

\ Mathematical description of a clock

Each unit i has an oscillator with oscillator period A

From oscillator to counter

Sl(t) — A | Sl

From counter to time

yi(t)

We neglect the
t—1 (to) clock quantization

N

estimator (clock) — /\; is the an estimate of A,

e

= yi(to) + Ailsi(t) —sito))
Ct— 1 ) We can have time
= y(to) + A, A(t) dependent estimation
A of the oscillator period
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Each unit i has an oscillator with oscillator period A

From oscillator to counter

We neglect the

t— 1o clock quantization

si(t) = A - sito)

-\/- yi(t)

From counter to time estimator (clock)

yi(t) = yi(to)_l_Ai(si(t)_si(to)) yi(to)

~ T— 1o
— yi(t0)+Ai Ai to t
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59\\\\“ \; .--.\. Mathematical description of a clock

Assume the units can operate corrections at time t|, t3, t3, . . .

Yi(tlj_) = y;(t, ) +uj(h)

A

Aieh) = Ailg,) + uf (h) "o

-

th t
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A -‘.;5\ Mathematical description of a clock
DL

4 N
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| a 1-’
A
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Remember that t Vi) /

L

_ A th41 — th
Yi(th+|) — Yi(t;r) T Ai(t;r) +A-

th th+1
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\\\“‘\ Mathematical description of a clock

\ “'fl"."‘ﬂ

11 -l N

Remember that ! Vi) /
_ A thel — Uy
Yi(th+|) — y,'(t;r) T Ai(t;r) A
~ //
th th+1
_ bt —th A
Ht) = w(6) + T A + ui(h)
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"‘“ \\\\“ﬂ-«»\ \ Mathematical description of a clock
Remember that ! vilt /
Vi(t) = yi(t") + Ai(ty )th+lA._ !
N //
th th+1
i) = ) + A + (b
= )+ R AG) + () + ()
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,\ Mathematical description of a clock

q

Remember that ! Vi) /
A th+1 — 1ty
Vit ) = yity) + Ai(g)) A
N2 //
th th+1
_ _ t — Ty
Yi(th+|) = (L, ) A h+IA, hA( ) + u; (h)
_ t — 1ty , -
= ylty) + T (A + o () + il (h)

Moreover

A

Ailtyyy) = Ailty ) + uf'(h)
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\\Qxe‘\ Mathematical description of a clock
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Denoting - o
th) = | X0t = {4
we obtain
=g | Gl un)
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where

T fu fi
F‘{fz. fr

is the local control matrix and Kjj(h) € R are t
forming the consensus matrix K(h) € RNXN,

ne interconnection coefficients
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where

T fu fi
F‘{fz. fr

is the local control matrix and Kjj(h) € R are t
forming the consensus matrix K(h) € RNXN,

We need to design F and K(h) such that

ne interconnection coefficients

yi(h) =y (h)] =0

Vi,j
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At time t, the node i needs to receive from the node j the state x;(h) only if

K;;(h) # O.
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;{;‘M Consensus for higher order systems

.;;-»-""’1

We get a consensus problem for higher order systems with two peculiarities:

* The dynamics are linear but time-varying.
* The dynamics of the systems are (slightly) different and partially unkown.

In the literature there are few theoretical results on this problem.

In case of time-varying topology
& L. Scardovi, R. Sepulchre, "Synchronization in Networks of Identical Linear Sys-
tems", Automatica 45 (2009), 2557-2562

In case of different systems
& C.-Y. Kao, U.T. Jonsson, and H. Fujioka. "Characterization of robust stability of a
class of interconnected systems". To appear in Automatica
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\deal (unrealistic) time-invariant case

In the ideal unrealistic case:

* Regularly timed correctionslth = hl + to;‘

 Time-invariant corrections‘K(h) = K. ‘

We get

We obtain a treatable consensus problem for non-identical systems with time
invariant communication topology.
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@R deal (unrealistic) time-invariant case

a4 > ;", s..._.,
\ y a ‘3;'-—‘ .l

Consider the global system having the 2N dimensional state x(h) formed
by the states x;(h) and having the output e(h) with components

e (h) = y(h) — 5 Sy (h)

In the choice of K and F there are two constraints:

¢ The two modes associated with the eigenvalue | have to be non-
observable.

¢ The other eigenvalues have to be inside the open unit circle.
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(unrealistic) time-invariant case

Consider the global system having the 2N dimensional state x(h) formed
by the states x;(h) and having the output e(h) with components

ei(h) = y,.(h) _ N Zy,(h) Synchronization error

In the choice of K and F there are two constraints:

¢ The two modes associated with the eigenvalue | have to be non-
observable.

¢ The other eigenvalues have to be inside the open unit circle.
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9 Ideal (unrealistic) time-invariant case
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The observability condition imposes that f,; # 0. Therefore the trian-
gular form

T fu fi
=10 £

does not work (this is the solution proposed by Scardovi, Sepulchre for
synchronizing double integrators).
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3’\\\\\\\2‘\ /deal (unrealistic) time-invariant case
BN FY )

The observability condition imposes that f,; # 0. Therefore the trian-

\ I
F_ 2

—1 0 -
does not work (this is the solution proposed by Scardovi, Sepulchre for
synchronizing double integrators).

5th HYCONZ2 PhD School



2 ldeal (unrealistic) time-invariant case
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The observability condition imposes that f,; # 0. Therefore the trian-

\ I
F_ 2

—1 0 -
does not work (this is the solution proposed by Scardovi, Sepulchre for
synchronizing double integrators).

The proposed solution is

e [fu 0
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(\uli2 Ideal (unrealistic) time-invariant case

\ .»-l?E?-‘.:.’!

The observability condition imposes that f,; # 0. Therefore the trian-

\ I
F_ 2

—1 0 -
does not work (this is the solution proposed by Scardovi, Sepulchre for
synchronizing double integrators).

The proposed solution is

c_[fi 0

(k) ="K |1t 0y~ y(h)
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ANl 4 2 Ideal (unrealistic) time-invariant case

a4 > ;", s..._.,
\ y a ‘3;'-—‘ .l

Solution

¢ If the graph G describing the feasible communications is undirected and A|'s
are equal, then

f||:|/37 f2|§A/T

max«%d,-,dj} if (’71) €& andi #.’

Kj = _Zj;éiKij ifi=j
0 otherwise

where d; denotes the number of neighbors of the node i.
o If Aj's are not equal, then for continuity the same choice works also if A;
are slightly different. We can use H> methods to evaluate how different these

Aj's can be.

o If G is not undirected, then ???
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s’*\\\\\\ 2\ Ideal (unrealistic) time-invariant case
RN WS
‘Solution |

¢ If the graph G describing the feasible communications is undirected and A|'s
are equal, then

f||:|/37 f2|§A/T

mald g7 f(ij)€&andiF]
Kj = _Zj;éiKij ifi=j
0 otherwise Metropolis weights

where d; denotes the number of neighbors of the node i.

o If Aj's are not equal, then for continuity the same choice works also if A;

are slightly different. We can use H> methods to evaluate how different these
Aj's can be.

o If G is not undirected, then ???
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Clock synchronization

Simulations shows the same algorithm yields synchronization also in the gen-
eral time-varying case and works well even in presence of time-varying oscil-
lator period and communication delays. However we have not been able to
prove this mathematically.

We could prove the local asymptotic synchronization of the so-called pseudo-
synchronous implementation.
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Conclusions

The consensus algorithm is an instance of a completely distributed
design. This is an extreme design paradigm.

It is intrinsically robust to external changes and highly selt-adaptive so
that a limited initial configuration and tuning effort is necessary.

None or limited information about the global structure of the system is
necessary to the units.

Graceful performance degradation.

Importance of the interaction network topology.
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Conclusions

There are two iImportant messages:

The consensus algorithm s

iINdices with different relatio

In large scale networks bot

hould be analyzed in the context of the

applications in which it is used. This yields different performance

ns with network topology.

N time and the numlber of agents may be

large. Therefore there might emerge several asymptotic regimes in

relation to how these two ©

uantities grow with respect to each other.
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